Demo: Gondola – a Parametric Robot Infrastructure for Repeatable Mobile Experiments


When deploying a testbed infrastructure for Wireless Sensor Networks (WSNs), one of the most challenging features is to provide repeatable mobility. Wheeled robots, usually employed for such tasks, strive to adapt to the wide range of environments where WSNs are deployed, from chaotic office spaces to neatly raked potato fields. For this reason, wheeled robots often require an expensive customization step in order to adapt, for example, their localization and navigation systems to the specific environment. To avoid this issue, we present Gondola, a parametric robot infrastructure based on pulling wires, rather than wheels. Gondola avoids the most common problems of wheeled robots and easily adapts to many WSNs’ scenarios. Different from existing solutions, Gondola can easily move in 3-dimensional space, with no need of a complex localization system and with an accuracy that is comparable to o-the-shelf traditional robots.

Acm Digital Library | Paper  | Code and schematics on GitHub

Authors: Marco Cattani and Ioannis Protonotarios
Research groups:  Embedded Software group, Delft University of Technology
Conference: 14th ACM Conf. on Embedded Networked Sensor Systems (SenSys)
Year: 2016